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Abstract —A statement of the lowest-volume principle, which holds both for simple systems and for collections of simple systems,
is proved. Moreover, new proofs of the highest-entropy and of the lowest-energy principles, for simple systems and for collections of
simple systems, are presented. The extremum principles proved in this paper hold for every set of states in which entropy is defined.
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Nomenclature

A simple system
a constant . . . . . . . . . . . . . . . . . . K
C collection of simple systems, each in

stable equilibrium
cv molar specific heat at constant volume . J·mol−1·K−1

f force . . . . . . . . . . . . . . . . . . . . N
M elementary mechanical system
N number of moles . . . . . . . . . . . . . mol
Ni number of moles of theith constituent . mol

N
(k)
i number of moles of theith constituent, in

thekth region of space . . . . . . . . . . mol
N composition vector . . . . . . . . . . . . mol
Nk composition vector in thekth region of

space . . . . . . . . . . . . . . . . . . . mol

p(m) pressure ofY(m) . . . . . . . . . . . . . Pa
Q quantity of heat . . . . . . . . . . . . . . J
q heat flux density . . . . . . . . . . . . . W·m−2

qi ith component ofq . . . . . . . . . . . . W·m−2

R heat reservoir
R universal gas constant . . . . . . . . . . J·mol−1·K−1

r position . . . . . . . . . . . . . . . . . . m
S entropy . . . . . . . . . . . . . . . . . . J·K−1

s entropy per unit mass . . . . . . . . . . J·kg−1·K−1

T thermodynamic temperature . . . . . . . K

* enzo.zanchini@mail.ing.unibo.it

TR thermodynamic temperature ofR . . . . K

T (i) thermodynamic temperature ofY(i) . . . K
U energy, internal energy . . . . . . . . . J

u energy per unit mass . . . . . . . . . . . J·kg−1

V volume . . . . . . . . . . . . . . . . . . m3

V (i) volume of theith region of space, ofY(i) m3

v volume per unit mass . . . . . . . . . . m3·kg−1

W quantity of work . . . . . . . . . . . . . J
X system which performs a cycle
Y collection of simple systems

Y (i) ith subsystem ofY

Greek symbols

δij Kronecker delta

λij tensor . . . . . . . . . . . . . . . . . . . m7·kg−1·W−2

λ scalar such thatλij = λδij . . . . . . . . m7·kg−1·W−2

Ω set of states ofY
Ω̃ subset ofΩ

Subscripts

g state of any kind
n nonequilibrium state
s stable equilibrium state
2s, 3s, 4s stable equilibrium states
0 reference value of a property
1 initial state, initial value of a

property
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1. INTRODUCTION

Two different forms of both the highest-entropy prin-
ciple and the lowest-energy principle have been presented
in treatments of thermodynamics. One of these forms has
been proposed by Callen [1], the other by Gyftopoulos
and Beretta [2]. Callen’s extremum principles refer to
a collectionC of simple systems, such that the subsys-
tems are separated by internal constraints and each of
them passes through stable equilibrium states only. The
highest-entropy principle, for instance, characterizes a
stable equilibrium state ofC as the highest-entropy one in
the manifold of states ofC which have fixed internal con-
straints and fixed values of the energy and of the volume.
This form of the highest-entropy and of the lowest-energy
principles can be used to establish the conditions for the
mutual stable equilibrium of systems which are sepa-
rately in equilibrium. On the other hand, Gyftopoulos–
Beretta’s extremum principles hold for every system and
for every set of states in which entropy is defined. For in-
stance, the highest-entropy principle stated by Gyftopou-
los and Beretta is as follows: among the many states of
a system that have given values of the energy, of the
amounts of constituents and of the parameters, the en-
tropy of the unique stable equilibrium state is larger than
that of any other state with the same values of energy,
amounts of constituents and parameters. This statement
does not require the existence of either internal con-
straints or subsystems which pass through stable equilib-
rium states only.

In recent years, extended theories of irreversible ther-
modynamics, which analyze local nonequilibrium states,
have been presented. In these theories, as well as in [2],
it is assumed that entropy is defined even for local non-
equilibrium states. Among these theories, let us recall,
for instance, that presented in [3]. In order to check if an
extended theory of irreversible thermodynamics is com-
patible with the basic laws of thermodynamics, extremum
principles which hold for local nonequilibrium states can
be useful. For instance, it is easily shown that the the-
ory of extended irreversible thermodynamics presented
in [3] is in agreement with Gyftopoulos–Beretta’s state-
ment of the highest-entropy principle. The consistency of
other extended theories of irreversible thermodynamics
with the highest-entropy principle is analyzed in [4].

Some years ago, Kazes and Cutler [5] have shown,
through a mathematical argument, that for a pair of sim-
ple systems separated by an internal constraint Callen’s
highest-entropy principle may imply a lowest-volume
principle, if the pressure of each simple system is pos-
itive. In a more recent study, Dunning-Davies [6] has

stated that, for a simple system without internal con-
straints and with a fixed number of particles, no lowest-
volume principle seems deducible. No statement of the
lowest-volume principle endowed with a broader validity
than that obtained in [5] is available in the literature.

In the present paper, statements of the highest-entropy,
of the lowest-energy and of the lowest-volume principles
which hold for any collection of simple systems, both in
the presence and in the absence of internal constraints, for
every set of states in which entropy is defined, are proved
from the formulation of the second law of thermody-
namics recently presented by Barletta and Zanchini [7].
Moreover, with reference to simple systems, it is shown
that the lowest-energy and the lowest-volume principles
can be deduced from the highest-entropy principle. Then,
the lowest-volume principle is illustrated by an example.
Finally, an application of the lowest-volume principle to
extended theories of irreversible thermodynamics is pre-
sented.

The statements of the highest-entropy and of the
lowest-energy principles presented here are similar to
those proposed by Gyftopoulos and Beretta [2]. However,
the proofs presented in this paper, for simple systems
and collections of simple systems, do not require the
assumption that any spontaneous process from a lower-
entropy state to a higher-entropy state can take place.

2. HIGHEST-ENTROPY, LOWEST-ENERGY
AND LOWEST-VOLUME PRINCIPLES

Let us recall Callen’s treatment of the highest-entropy
principle [1]. First,simple systemsare defined as “sys-
tems that are macroscopically homogeneous, isotropic,
and uncharged, that are large enough so that surface ef-
fects can be neglected, and that are not acted by elec-
tric, magnetic, or gravitational fields”. Then, the follow-
ing postulates are stated.

“Postulate I. There exist particular states (called equi-
librium states) of simple systems that, macroscop-
ically, are characterized completely by the internal
energyU , the volumeV , and the mole numbers
N1,N2, . . . ,Nr of the chemical components.”

“Postulate II. There exists a function (called the en-
tropyS) of the extensive parameters of any composite
system, defined for all equilibrium states and having
the following property: The values assumed by the ex-
tensive parameters in the absence of an internal con-
straint are those that maximize the entropy over the
manifold of constrained equilibrium states.”
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Postulate II is Callen’s highest-entropy postulate.
Clearly, it refers only to composite systems, with inter-
nal constraints, such that the constituent subsystems are
in equilibrium. Postulate I is not completely satisfactory,
because the author does not state a definition of equilib-
rium state. We will show that, if postulate I is replaced
by a proper definition ofstable equilibrium stateand by
the statement of the second law presented by Barletta
and Zanchini [7], then a statement of the highest-entropy
principle simpler and more general than postulate II can
beproved.

In this paper, in analogy with the treatment presented
by Callen [1], we will refer either to simple systems or to
collections of simple systems, separated by internal walls
or semi-permeable walls. We will describe the matter of
each system by means of the mole numbers of its nonre-
active constituents, i.e., of constituents whose mole num-
bers cannot change if the system is closed. Let us define
anequilibrium stateas a state which can be reproduced as
a time-invariant state of an isolated system [8], and asta-
ble equilibrium stateas an equilibrium state which cannot
be modified by a process that leaves no net changes of the
positions of the walls and of the semi-permeable walls
of the system and that leaves no net effects in the envi-
ronment [8]. Moreover, let us callelementary mechani-
cal systeman auxiliary systemM such that: the matter
of M gives negligible contributions to gravitational, elec-
tric and magnetic fields; every state ofM is uniquely de-
termined by the positionr of a material point ofM, to
which an external forcef determined byr is applied [9].
An example of elementary mechanical system is a sys-
tem which undergoes an infinitely slow translation in a
uniform gravitational field, without any other change of
state, under the effect of a constant external force [9]. Let
us state the second law of thermodynamics as follows [7].

• Let Y be a collection of simple systems, and let
V (1), V (2), . . . , V (m) be the volumes of the regions of
space bounded by walls which constrain the matter
of Y. Let N(k) be a vector whose components represent
the mole numbers of the nonreactive constituents ofY
constrained in the region with volumeV (k). For every
choice ofV (1), V (2), . . . , V (m), N(1),N(2), . . . ,N(m), and
of the energyU of Y there exists a unique stable
equilibrium state ofY.

If no internal semi-permeable wall is present, the
interpretation of this statement of the second law is
very simple. In the presence of internal semi-permeable
walls, the correct interpretation will be illustrated by
an example. Let us suppose that systemY has two
nonreactive constituents and is divided in two parts by
an internal wall impermeable to the first constituent

and permeable to the second. Let us callV (1) the
volume of one subsystem,N(1)1 the number of moles
of the first constituent contained in this subsystem,V (2)

the total volume,N(2)1 and N(2)2 the mole numbers
of the first and of the second constituent contained
in the total volume. Then, for every set of values of
V (1), V (2),N

(1)
1 ,N

(2)
1 ,N

(2)
2 and of the energyU of Y

there exists a unique stable equilibrium state ofY.

For the special case of a simple system, which has
no internal wall or semi-permeable wall and thus a
unique volumeV and a unique composition vector
N= (N1,N2, . . . ,Nr), the second law stated above can
be written as follows.

• If A is any simple system, then for every set of values
of the energyU of A, of the volumeV of A and of the
mole numbersN1,N2, . . . ,Nr of the constituents ofA
there exists a unique stable equilibrium state ofA.

Note that, in this particular case, the statement of the
second law becomes very similar to Callen’s postulate I.

Let us now prove that the statement of the second
law reported above implies a highest-entropy principle,
a lowest-energy principle and a lowest-volume principle
for every collection of simple systems.

THEOREM 1. HIGHEST-ENTROPY PRINCIPLE. – Let
Y be any collection of simple systems. Among all the
states ofY which have given volumesV (1), V (2), . . . ,
V (m) of the regions of space in which the matter ofY
is constrained, given composition vectorsN(1),N(2), . . . ,
N(m) of the matter constrained in these regions of space
and a given value of the energyU of Y, the unique stable
equilibrium state is the highest-entropy state.

Proof. –Given V (1), V (2), . . . , V (m), N(1),N(2), . . . ,
N(m) andU , let Ys be the corresponding stable equilib-
rium state ofY andYg be any other state ofY. We will
prove thatS(Yg) < S(Ys). Let us assume thatS(Yg) ≥
S(Ys). Let us consider a reversible processYs→ Yg of
an isolated systemY + R + X + M, whereR is a heat
reservoir with temperatureTR, X is any system which per-
forms a cycle andM is an elementary mechanical system.
This process exists. In fact, since the entropy difference
S(Yg)−S(Ys) is defined, there exists a reversible process
Ys→ Yg of a proper isolated system such that systemY
performs work onM and receives an infinite number of
infinitesimal heat quantitiesδQ, each from a heat reser-
voir at a temperatureT [10]. All heat reservoirs except
one, which will be denoted byR, can be restored to their
initial states by means of a reversible cyclic apparatus,X.
When this has been done, a reversible processYs→ Yg
of an isolated systemY+ R+ X+M has been obtained.
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If one denotes byQ the quantity of heat which has been
taken fromR, the entropy change ofR in this process is
−Q/TR. On the other hand, since the process is reversible
andY+R+X+M is isolated, the entropy change ofY+R
is zero. Therefore one has, in the process under exam,

S(Yg)− S(Ys)= Q

TR
(2.1)

The assumptionS(Yg) ≥ S(Ys) and equation (2.1) yield
Q ≥ 0. However, this result is impossible. In fact, since
the energy ofY is unchanged, ifQ = 0 the stable
equilibrium stateYs of Y has been modified without net
changes of the positions of the walls and of the semi-
permeable walls ofY and without net effects in the
environment ofY, contrary to the definition of stable
equilibrium state. IfQ> 0, then a positive workW =Q
has been performed. As is well known, this work can
be dissipated intoR. After this has been done, when
R has reached again its initial stable equilibrium state,
the same condition discussed above forQ = 0 has been
obtained. 2

THEOREM 2. LOWEST-ENERGY PRINCIPLE. – Let Y
be any collection of simple systems. Among all the states
of Y which have given volumesV (1), V (2), . . . , V (m) of
the regions of space in which the matter ofY is con-
strained, given composition vectorsN(1),N(2), . . . ,N(m)

of the matter constrained in these regions of space and
a given value of the entropyS of Y, the unique stable
equilibrium state is the lowest-energy state.

Proof. –Given V (1), V (2), . . . , V (m), N(1),N(2), . . . ,
N(m) andS, let Ys be the corresponding stable equilib-
rium state ofY andYs be any other state ofY. We will
prove thatU(Yg) > U(Ys). Let us assume thatU(Yg) ≤
U(Ys). Let us consider a reversible processYs→ Yg of
an isolated systemY + R + X + M, whereR is a heat
reservoir with temperatureTR, X is any system which per-
forms a cycle andM is an elementary mechanical system.
Since the entropy differenceS(Yg) − S(Ys) is defined,
this process exists, as it has been proved in theorem 1. In
this process, the entropy ofY remains unchanged on ac-
count of the assumptionS(Yg) = S(Ys) and the entropy
of Y + R remains unchanged because the process of the
isolated systemY + R + X + M is reversible. Therefore
the entropy ofR remains unchanged, so that the quan-
tity of heatQ taken fromR is zero. IfU(Yg) = U(Ys),
then the stable equilibrium stateYs of Y has been modi-
fied without net changes of the positions of the walls and
of the semi-permeable walls ofY and without net effects
in the environment ofY, contrary to the definition of sta-
ble equilibrium state. IfU(Yg) < U(Ys), then a positive

work W has been performed. By dissipating this work
into Y, for instance by a stirrer, it is possible to bringY
in a nonequilibrium stateYn, without net changes of the
positions of the walls and of the semi-permeable walls
of Y. Thus, the stable equilibrium stateYs of Y has been
modified without net changes of the positions of the walls
and of the semi-permeable walls ofY and without net ef-
fects in the environment ofY, contrary to the definition
of stable equilibrium state.2

Before presenting the statement and the proof of the
lowest-volume principle for any collection of simple
systems, we must prove the following lemma.

LEMMA 1. – Let Y be any collection of simple sys-
tems. For every choice of the energyU of Y, of the en-
tropy S of Y, of the composition vectorsN(1),N(2), . . . ,
N(m) in the regions of space in which the matter ofY
is constrained, of the volumesV (1), V (2), . . . , V (m−1) of
these regions of space, except one, there exists a unique
stable equilibrium state ofY.

Proof. –Let Ω be the set of the stable equilibrium
states ofY which have the same values ofU , N(1),N(2),
. . . ,N(m), V (1), V (2), . . . , V (m−1). On account of the sec-
ond law of thermodynamics, for every value ofV (m)

there exists a unique stable equilibrium state ofY in Ω .
SinceU , N(1),N(2), . . . ,N(m),V (1), V (2), . . . , V (m−1) are
fixed, the Gibbs relation forY in Ω yields [11, 12]

dU = T dS − p(m) dV (m) = 0 (2.2)

wherep(m) is the pressure of themth subsystem ofY
and T is the thermodynamic temperature ofY. From
equation (2.2) one obtains

dS = p
(m)

T
dV (m) (2.3)

Since bothp(m) andT can assume only positive values,
equation (2.3) shows that, inΩ , the entropyS of Y is
a strictly increasing function ofV (m). Therefore, a single
valued functionV (m)(S) exists inΩ . Moreover, for every
prescribed value ofS there exists inΩ a unique stable
equilibrium state ofY, determined by the value of the
functionV (m)(S). 2

THEOREM 3. LOWEST-VOLUME PRINCIPLE. – LetY
be any collection of simple systems. Among all the states
of Y which have given composition vectorsN(1),N(2),
. . . ,N(m) in the regions of space in which the matter ofY
is constrained, given volumesV (1), V (2), . . . , V (m−1) of
these regions of space, except one, given values of the
energyU and of the entropyS of Y, the unique stable
equilibrium state is the lowest-volume state.
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Proof. –Let Ys be the stable equilibrium state ofY

with volumesV (1), V (2), . . . , V (m−1), V
(m)
s , composition

vectorsN(1),N(2), . . . ,N(m) in these regions of space,
total energyU and total entropyS. Let us assume that
there exists another stateYg of Y with the same values
of V (1), V (2), . . . , V (m−1), N(1),N(2), . . . ,N(m),U andS,
and such thatV (m)g ≤ V (m)s . This assumption is not
legitimate for the following reasons. Let us consider a
reversible processYs→ Yg of an isolated systemY+R+
X+M, whereR is a heat reservoir with temperatureTR,
X is any system which performs a cycle andM is an
elementary mechanical system. As it has been proved
in theorem 1, this process exists because the entropy
differenceS(Yg)−S(Ys) is defined. Moreover, since both
the energy and the entropy ofY are unchanged, it is easily
verified that no net effect in the environment ofY exists in
this process. IfV (m)g = V (m)s , then the stable equilibrium
state Ys of Y has been modified without net changes
of the positions of the walls and of the semi-permeable
walls of Y and without net effects in the environment
of Y, contrary to the definition of stable equilibrium state.
If V (m)g < V

(m)
s , starting from stateYg it is possible to

restore themth subsystem ofY to its original volume
V
(m)
s , without net effects in the environment ofY, by

means of a sudden displacement of the walls of this
subsystem, in empty space. In this way,Y is brought to
a nonequilibrium state,Yn. Thus, through the combined
processYs→ Yg→ Yn, systemY has been brought from
the stable equilibrium stateYs to the nonequilibrium
stateYn without net changes of the positions of the walls
and of the semi-permeable walls ofY and without net
effects in the environment ofY, contrary to the definition
of stable equilibrium state.2

Clearly, the statements and the proofs of theorems 1–3
and of lemma 1 hold, in particular, for simple systems.
In this case, they can be written in a simpler form, but,
conceptually, remain unchanged. In the following, we
will write the statements of the extremum principles for
simple systems. Then, with reference to simple systems,
we will prove that both the lowest-energy principle and
the lowest-volume principle can be deduced from the
highest-entropy principle. It is easily verified that the
deduction could be repeated for collections of simple
systems.

HIGHEST-ENTROPY PRINCIPLE FOR SIMPLE SYS-
TEMS. – Among all the states of a simple systemA which
have given values of the energyU , of the volumeV and
of the mole numbersN1,N2, . . . ,Nr of the nonreactive
constituents, the unique stable equilibrium state is the
highest-entropy state.

LOWEST-ENERGY PRINCIPLE FOR SIMPLE SYS-
TEMS. – Among all the states of a simple systemA which
have given values of the entropyS, of the volumeV and
of the mole numbersN1,N2, . . . ,Nr of the nonreactive
constituents, the unique stable equilibrium state is the
lowest-energy state.

LOWEST-VOLUME PRINCIPLE FOR SIMPLE SYS-
TEMS. – Among all the states of a simple systemA which
have given values of the energyU , of the entropyS and
of the mole numbersN1,N2, . . . ,Nr of the nonreactive
constituents, the unique stable equilibrium state is the
lowest-volume state.

Proof. –Let A be any simple system, with fixed values
of the mole numbers of its nonreactive constituents,
and let A1 be an arbitrarily chosen state ofA, with
energyU1, volumeV1 and entropyS1. Let us consider
any processA1 → A2s of A, where A2s is the stable
equilibrium state ofA with energyU1 and volumeV1. On
account of the highest-entropy principle,S(A2s) > S1. In
order to restore the entropy ofA to its initial valueS1,
without changing the volumeV1 of A, we can take
heat fromA, in a quasistatic and reversible process at
constant volumeA2s→ A3s of A. Thus, in the stable
equilibrium stateA3s, A has volumeV1, entropyS1, and
an energyU(A3s) < U1. The lowest-energy principle has
been proved, becauseU(A3s) is lower than the energy
of an arbitrarily chosen state ofA with volumeV1 and
entropyS1. Since the pressure ofA is positive, we can
restore the energy ofA to its initial valueU1, without
changing the entropyS1 of A, by means of an adiabatic
quasistatic and reversible compressionA3s→ A4s of A.
In the final stable equilibrium stateA4s, A has energyU1,
entropyS1, and a volumeV (A4s) < V1. Thus, the lowest-
volume principle has been proved, becauseV (A4s) is
lower than the volume of an arbitrarily chosen state ofA
with energyU1 and entropyS1. 2

3. AN EXAMPLE ON THE
LOWEST-VOLUME PRINCIPLE

The lowest-volume principle deduced in Section 2 will
be illustrated by an example. LetY = Y(1) + Y(2) be a
composite system, such thatY(1) and Y(2) are identical
simple systems, each composed ofN moles of an ideal
monoatomic gas. Letcv be the molar specific heat at
constant volume of this gas, which, as is well known, has
the value(3/2)R, whereR is the universal gas constant.
On account of the lowest-volume principle, ifΩ is the
set of the states ofY with fixed values ofU , S andV (1),
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the state ofΩ in which the volumeV of Y is minimum is
the unique state ofΩ which is a stable equilibrium state
of Y. In this example, we will consider only the subset
Ω̃ of Ω which is composed of stable equilibrium states
of Y(1) and ofY(2). We will show that the state of̃Ω in
which the volumeV of Y is minimum is the unique state
of Ω̃ which is a stable equilibrium state ofY.

The internal energy of an ideal monoatomic gas in
stable equilibrium, withN moles and temperatureT , is
given by

U −U0=Ncv(T − T0) (3.1)

whereT0 is a reference temperature andU0 is the internal
energy value assigned to the system at temperatureT0. If
one choosesU0= 0, equation (3.1) yields

U =Ncv(T − T0) (3.2)

By applying equation (3.2) toY(1) and to Y(2) and
by employing the additivity of energy, one obtains the
following expression of the energy ofY, for every state
of Y which belongs tõΩ :

U =Ncv
(
T (1)+ T (2) − 2T0

)
(3.3)

whereT (1) is the temperature ofY(1) and T (2) is the
temperature ofY(2).

The entropy of an ideal monoatomic gas in stable equi-
librium, with N moles, temperatureT and volumeV , is
given by

S − S0=Ncv ln
T

T0
+NR ln

V

V0
(3.4)

whereV0 is a reference volume andS0 is the entropy
value assigned to the system at temperatureT0 and
volumeV0. If one choosesS0= 0, equation (3.4) yields

S =Ncv ln
T

T0
+NR ln

V

V0
(3.5)

By applying equation (3.5) toY(1) and toY(2) and by
employing the additivity of entropy, one obtains the
following expression of the entropy ofY, for every state
of Y which belongs tõΩ :

S =Ncv ln
T (1)T (2)

T 2
0

+NR ln
V (1)V (2)

V 2
0

(3.6)

It is easily verified that there exist infinite values ofV (2)

which fulfil equations (3.3) and (3.6) with prescribed
values ofU , S andV (1); therefore, the set̃Ω contains
infinite states. We will now prove that, among these

states, one and only one minimizesV (2), and thusV , and
is a stable equilibrium state ofY.

From equation (3.6), one obtains

ln
V (1)V (2)

V 2
0

= 1

NR

(
S −Ncv ln

T (1)T (2)

T 2
0

)
(3.7)

Since the natural logarithm is a strictly increasing func-
tion, on account of equation (3.7) the productV (1)V (2)

is minimum if and only if the productT (1)T (2) is maxi-
mum. Obviously, the minimum value ofV (1)V (2) corre-
sponds to the minimum value ofV (2) and ofV , because
the value ofV (1) is prescribed. The productT (1)T (2) is
maximum if and only ifT (1) = T (2) = T . In fact, if we
consider another state of̃Ω such that the temperature of
Y(1) is T + a, then the temperature ofY(2) in this state is
necessarilyT − a, in order to keep the total energy ofY
unchanged. For every nonvanishing value ofa, the fol-
lowing inequality holds:

(T + a)(T − a)= T 2− a2< T 2 (3.8)

Let us consider the state of̃Ω such thatT (1) = T (2) = T .
This state exists and is unique. In fact, with this addi-
tional constraint, equation (3.3) allows one to determine
the temperatureT ; then equation (3.6) allows one to
determine a unique value ofV (2). Moreover, this state
is the unique stable equilibrium state ofY in Ω̃ , be-
cause only this state fulfils the necessary condition for
the mutual stable equilibrium ofY(1) and Y(2), namely
T (1) = T (2) = T . Therefore, the unique stable equilib-
rium state ofY which belongs toΩ̃ is the unique state
of Ω̃ which minimizes the volumeV of Y.

4. THE LOWEST-VOLUME PRINCIPLE
AND GENERALIZED THEORIES OF
IRREVERSIBLE THERMODYNAMICS

In generalized theories of irreversible thermodynam-
ics, where local nonequilibrium states are considered, it
is assumed that the generalized entropy per unit masss

of a medium depends not only on the energyu and on the
volumev per unit mass, but also on other variables. For
instance, in extended irreversible thermodynamics [3], it
is assumed that the generalized entropy per unit mass of
a fluid depends not only onu andv, but also on the com-
ponents of the heat flux densityq and of the stress tensor.
This assumption implies that, for nonviscous fluids,s de-
pends onu, v andq. For these fluids, one could assume
that the volume per unit massv depends not only on the
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energyu and the entropys per unit mass, but also on the
heat flux densityq. More precisely, in analogy with the
treatment presented in [3], one could guess that, for these
fluids, the relation betweenv, u, s, andq is

v = v0(u, s)+ λij (u, s)qiqj (4.1)

where v0(u, s) is the specific volume in the stable
equilibrium state with specific energyu and specific
entropy s, while λij (u, s) is a symmetric tensor. The
lowest-volume principle yields a constraint onλij (u, s),
i.e. that λij (u, s) is positive definite. In particular, if
λij (u, s) is isotropic, the scalarλ such thatλij (u, s) =
λ(u, s)δij must be positive. In this case, equation (4.1)
can be rewritten as

v = v0(u, s)+ λ(u, s)q · q (4.2)

Equation (4.2) implies that, if heat transfer occurs in a
nonviscous fluid, for fixed values ofu ands the volume
per unit mass is an increasing function of the modulus
of q.

Let us point out that the constraint onλij (u, s) stated
above could not be obtained, in general, by employing
either the highest-entropy principle or the lowest-energy
principle.

5. CONCLUSIONS

The highest-entropy, the lowest-energy and the lowest-
volume principles have been deduced from a recent for-
mulation of the second law of thermodynamics. The
statements proved here hold for any collection of sim-
ple systems, including one simple system, and for any
set of states in which entropy is defined. On the con-
trary, Callen’s statements of the highest-entropy and of
the lowest-energy principles apply only to composite sys-
tems with internal constraints, such that each subsystem
is in a stable equilibrium state. The lowest-volume prin-
ciple proved in this paper yields restrictions on the pos-

sible values of the volume per unit mass, in the frame-
work of generalized theories of irreversible thermody-
namics.
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